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Topology invariance in percolation thresholds
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Abstract. An universal invariant for site and bond percolation thresholds (pcs and pcb respectively) is

proposed. The invariant writes {pcs}
1/as {pcb}

−1/ab = δ/d where as, ab and δ are positive constants, and
d the space dimension. It is independent of the coordination number, thus exhibiting a topology invariance
at any d. The formula is checked against a large class of percolation problems, including percolation in
non-Bravais lattices and in aperiodic lattices as well as rigid percolation. The invariant is satisfied within
a relative error of ±5% for all the twenty lattices of our sample at d = 2, d = 3, plus all hypercubes up to
d = 6.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions – 64.60.Cn
Order-disorder transformations; statistical mechanics of model systems – 64.70.Pf Glass transitions

1 Introduction

Percolation phenomena are active in a rather broad spec-
trum of physical and non-physical problems [1]. It is now a
full part of Statistical Physics. However, most studies have
been devoted to percolation on regular lattices, merely for
convenience [2]. But even for these lattices, exact results
are scarce. In particular site and bond percolation thresh-
olds are known exactly only at d = 2 and for a few cases.
Otherwise all available thresholds are given by numerical
estimates [1].

In the past several attempts were made to unify per-
colation thresholds. None was really satisfactory. We have
presented very recently an universal power law to yield
both site and bond percolation thresholds, pcs and pcb re-
spectively, within an excellent accuracy [3],

pcs = p0s {(d− 1)(q − 1)}−as , (1)

for site and

pcb = p0b

{
(d− 1)(q − 1)

d

}−ab

, (2)

for bond with d the space dimension and q the coordina-
tion number. The formula yields thresholds for any Bra-
vais lattice, at any dimension with an impressive accuracy
[3].

For d ≤ 6, two different classes were found, and iden-
tified by distinct parameter sets {p0i; ai} where i = s, b.
Both equations (1, 2) are satisfied within few per cent for
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all the lattices inside a given class. The first class includes
two-dimensional triangle, square and honeycomb lattices.
It is characterized by {p0s = 0.8889; as = 0.3601} for site
dilution and by {p0b = 0.6558; ab = 0.6897} for bond di-
lution. Two-dimensional Kagomé and all other lattices of
cubic symmetry (for 3 ≤ d ≤ 6) constitute the second class
which is characterized by {p0s = 1.2868; as = 0.6160} and
{p0b = 0.7541; ab = 0.9346} for sites and bonds respec-
tively.

Above results were obtained using a sample which in-
cludes most common lattices mentioned above [3]. This
is, however, quite restrictive, because of the new trends
in modern percolation problems related in particular to
directed percolation, percolation in aperiodic lattices, and
rigidity percolation.

In the present work, we use a much broader lattice
sample including percolation in non-Bravais lattices and
in aperiodic lattices, and rigidity percolation as well. How-
ever, extension of equations (1, 2) to non-regular lattices
is questionable, in particular with respect to the use of
the coordination number q as a relevant parameter in our
universal formula.

Indeed some lattices with equal d and q have differ-
ent pc, like, for instance, the stacked triangle lattice and
bcc lattices at d = 3 [4,5]. In this paper we name stacked
triangle the 3d-lattice also called hexagonal lattice in the
literature, to avoid any confusion with hexagonal compact
lattice, and the 2d-triangle lattice also called hexagonal
by some authors. Moreover equations (4, 5) are found not
to hold for many non-regular lattices, which is indeed not
surprising. Percolation should depend on the degree of lat-
tice anisotropy, which is not included in equations (1, 2)
where only the bare coordination number q appears.
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Therefore, at this stage, with respect to our power law,
there is no proof that, besides the dimension d, there ex-
ists one single parameter which contains all the relevant
information on the lattice topology. Yet, this parameter
entering equations (1, 2), if it exists, clearly cannot be
reduced to the coordination number q.

Nevertheless, it is worth noting that for each lattice,
there exists one single parameter qeff which reproduces,
within an excellent accuracy, both percolation thresholds
from equations (4, 5) [6]. However, at present, we have no
scheme to calculate qeff , which then, has to be determined
from the values of site or bond percolation thresholds.

To bypass this difficulty, we can eliminate q from equa-
tions (1, 2) by combining them to obtain, for the first time
in percolation theory, a universal invariant which combines
pcs, pcb and d. The formula exhibits a topology invariance
and holds for all percolation problems, including perco-
lation in non-Bravais lattices and in aperiodic lattices as
well as rigidity percolation. The invariant is satisfied, at
worst within ∓0.05 for all the twenty lattices of our sam-
ple at d = 2, d = 3, plus the hypercubes up to d = 6 with
the same relative accuracy.

2 The invariant

2.1 Non-regular lattices

Let us first review the large spectrum of non-regular lat-
tices we include in our sample with their main charac-
teristics. The stacked triangle lattice is anisotropic with
6 equivalent nearest neighbors (nn) in the a, b plane
(bonding angle is 60◦), and two non equivalent neighbors
along the c axis perpendicular to it (bonding angle is 90◦.
pcs, pcb for this lattice have been determined very recently
[4]. On another hand, the hexagonal close packed (hcp)
lattice is a non-Bravais lattice, with two lattice sites per
unit cell. The percolation thresholds of the hcp lattice have
been determined a long time ago [7].

Aperiodic lattices are represented by quasicrystals. Be-
sides their own interest, these aperiodic materials with
long range order can serve as models for alloy materials,
hence a growing interest in their percolation thresholds.
Our sample includes Penrose tiling [8–10], octagonal and
dodecagonal tilings [11] with chemical links (connection
via the tile edges), and ferromagnetic links (connection
through the diagonal of the tiles, which are shorter than
the tile edges) [12].

The sample is also enriched by the dual of the lat-
tices. Percolation thresholds for the dual of quasicrystals
have also been estimated in references [8–11]. Those of
the dual of kagomé, named the dice lattice are reported in
reference [8]. The duals of periodic 3-dimensional fcc, hcp
and diamond lattices have been estimated very recently
[5].

We also include in the sample the case of rigidity per-
colation [13]. The bond percolation threshold for the ex-
istence of stress carrying paths have been recently deter-
mined [14] in a lattice generated by randomly displacing
the sites of a triangular lattice in dimension d = 2.

Fig. 1. Decimal logarithm of site versus bond percolation
thresholds.

2.2 Site versus bond percolation thresholds

We can easily eliminate q between the expressions of pcs

and pcb using equations (1, 2). We actually get the follow-
ing invariant which combines both percolation thresholds
with the dimension,

{pcs}
1/as {pcb}

−1/ab =
δ

d
(3)

where δ ≡ {p0s}
1/as {p0b}

−1/ab .

Our above formula shows for the first time a topol-
ogy invariance with respect to percolation thresholds. To
check its validity against our sample of lattices, it is more
convenient to rewrite it as

pcs = δas
{
d−abpcb

} as
ab , (4)

to have a better graphic representation.

We have plotted in Figure 1 log(pcs) versus log(d−ab×
pcb). From equation (3), the universal curve in Figure 1
reduces to a straight line. The agreement of equation (3)
with the data is impressive for all the lattices, with the
exception of the dual of diamond, which is far from the
straight line in Figure 1.

Percolation thresholds decrease with increasing space
dimensionality. Therefore, the best test for the law when
d varies from 2 to 6 is provided by the relative deviation
∆pc/pc, since the absolute deviation ∆pc is necessarily
small at large d. That is why we have plotted in Figure 1
the logarithm of the quantities of interest, in linear scale,
instead of the quantities in a logarithmic scale. The devi-
ation from the straight line in Figure 1 is thus a measure
of the relative deviation from the law. Also, the accuracy
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of equation (2) is evident from the correlation coefficient,

r =
n
∑

xy −
∑

x
∑

y√[
n
∑

x2 −
(∑

x
)2
][

(n
∑

y2 −
(∑

y
)2
] (5)

on the data (x, y) on the n = 9 lattices of the first class
and the n = 13 lattices of the second class (once the dual of
diamond has been excluded) in a linear regression analysis.
The result is r = 0.997 for the first class, and r = 0.9994
for the second class. Yet the smaller value of r in the first
class may be due to the lack of accuracy in the deter-
mination of the percolation thresholds for the octa- and
dodecagonal quasicrystals and their duals. The associated
numerical estimate is reported with only two decimals for
bonds, and three decimals for sites [10], against four dec-
imals in most other cases.

The parameters p0s, p0b, as and ab have been deter-
mined from the fit of equations (1, 2) [3]. However, these
equations are only approximate, so that the values of as

and δ deduced from this work is not the best choice for
these parameters entering equation (3) or equation (4). In-
stead, we have determined as and δ independently, from
the least square fit of the data in Figure 1 by a straight
line. The same linear regression analysis which has pro-
vided us with the correlation coefficient r above mentioned
gives{

as = 0.3670; δ = 1.3638 for the first class
as = 0.6068; δ = 1.9340 for the second class.

(6)

We have listed in Table 1 the quantity

C =
δ

d(p
1/as
cs p

−1/ab

cb )
· (7)

The relative error with respect to equation (3) for each
lattice is then |C − 1 |.

Though the deviations are small, they are significant,
showing our formula is not exact. One consequence is the
inconsistency in the numerical value of as in equation (6),
different from the value of as deduced from the least-
square fit of equation (1) in reference [3] in the case of
the second class. In particular, we have checked that this
difference is not solely related to the addition of many lat-
tices to the initial sample in [3] for both classes: when all
the lattices in the present work are taken into account,
as deduced from the fit of equation (1) is 0.618 for the
second class, close to 0.616 reported when the samples are
reduced to the initial set of basic lattices [3]. The differ-
ence with 0.6068 in equation (6) is then due to the fact
that none of the equation (1, 2), and (4) are exact.

Actually, from equation (7), an upper limit of the rel-
ative error is given by

|C − 1 | ≤
1

as

∆pcs

pcs
+

1

ab

∆pcb

pcb
· (8)

It is reached when deviations of pcs and pcb from equa-
tions (1, 2) are not correlated. For the second class, as an

Table 1. exact estimates of percolation thresholds pc and uni-
versal constant C defined in equation (6). Deviation of C from
unity measures the departure from the invariant. All the lat-
tices belonging to the first class are in dimension d = 2. Those
of the second class are in d = 2 (the three first ones), d = 3
(next nine lattices) and d = 4, 5, 6 for the simple hyper-
cube (sc).

first class
Lattice pc(site) pc(bond) C

Square 0.5928 0.5 1.05
Honeycomb 0.6962 0.6527 0.99
Triangular 0.5 0.34729 0.98

Rigid perco. 0.6975 0.644 0.97
Dice 0.5851 0.476 1.01

Penrose 0.5837 0.477 1.02
Octa.chem.links 0.585 0.48 1.01
Octa.ferro.links 0.543 0.40 0.98
Dode.chem.links 0.628 0.54 1.00

second class
Lattice pc(site) pc(bond) C

Kagomé 0.6527 0.5244 0.99
dual of Penrose 0.6381 0.5233 1.02
Dode.ferro.links 0.617 0.495 1.02
hexag. compact 0.204 0.124 0.96
stacked triangle 0.2623 0.1859 0.98

Diamond 0.43 0.1859 0.95
simple cubic 0.3116 0.2488 1.00

bcc 0.246 0.1803 1.05
fcc 0.198 0.119 0.96

dual of fcc 0.3341 0.2703 0.98
dual hexag. comp. 0.3101 0.2573 1.05
dual of diamond 0.3904 0.235 0.66

sc (d = 4) 0.197 0.1601 1.00
sc (d = 5) 0.141 0.1182 1.00
sc (d = 6) 0.107 0.0942 1.03

example, the relative accuracy of equation (1) according to
reference [3] is ∆pcs/pcs = 3%, while that of equation (2)
is ∆pcb/pcb = 2%, hence |C − 1 | ≤ 7%. According to
Table 1, the deviation of C from unity is better than ex-
pected, namely within 5 per cent. This accuracy for the
universal law in equation (3) means a correlation between
deviations of equations (1, 2), so that equation (3) can
be satisfied, despite equations (1, 2) are not. The most
outstanding illustration is provided by the rigidity perco-
lation case. Here, equation (3) is satisfied, with C= 0.97,
but the site and the bond percolation thresholds according
to equations (1, 2) are those expected for a lattice with
q = 3, while the actual coordination number is q = 6.

The topology invariance law in equation (3) is satisfied
(within 5%) for all the lattices with the exception of the
dual of diamond. We then conclude that the dimension
d which is the only variable in this equation is a robust
parameter. On another hand, the percolation thresholds
of some lattices are significantly different from those ex-
pected from equations (1, 2). In a prior work [15], we had
already given arguments to substitute q by (q − 1) in for-
mulas to determine percolation thresholds in frustrated
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lattices. The rigidity percolation with qeff = 3 against
q = 6 is another evidence that the coordination number is
not a robust parameter. This is a limit to the application
of equations (1, 2) as long as any model to determine qeff

[3] from the topology of the lattice is lacking. Equation (3)
is then a significant improvement, as it does not involve
any additional unknown parameter. Moreover, this law is
the first link between site and bond percolation thresholds.

We have already argued [3] that equations (1, 2) vio-
late the (q − 1)−1 expansions for the d-dimensional sim-
ple hypercubic lattice percolation thresholds, and do not
match the Bethe asymptotic limit. This is also the case
for equation (3). Actually, in the large d limit, the leading
term for both percolation thresholds should be the Bethe
term ps

c ∼ pb
c ∼ 1/(q − 1) ∼ 1/(2d). From equation (4)

this limit requires:

1

as
−

1

ab
= 1; δ =

1

2
· (9)

The deviation from our results in equation (6) gives ev-
idence that our formula in equations (3, 6) is not com-
patible with exact 1/d expansion. We then expect that
the range of validity for our formula is the same as for
equations (1, 2), namely d ≤ 7, from reference [3].

3 Conclusion

Lattices with a higher coordination number have lower
percolation thresholds [5]. Yet there are exceptions like
the Kagomé lattice at d = 2 and the dual of diamond at
d = 3.

At d = 2 there are theoretical arguments according to
which the bond percolation threshold of a lattice and its
dual should add to one. However, no regularity has been
found in three dimensions [5].

The universal law provided by equation (3) is then
the first relation which links site and bond percolation

thresholds. It applies in any dimension up to d = 6, and
extends to any kind of lattice. Departure from this uni-
versal law for all the lattices in any dimension is within
few per cent.

In addition, the robustness of our universal law sup-
ports the extension to more complex problems such as
rigidity percolation. We then expect it to be satisfied for
any percolation problem, with very few out-liers. The only
one we have found so far is the dual of diamond for which
indeed an anomalous site percolation threshold has been
reported.

We would like to thank Monsieur Dietrich Stauffer for stimu-
lating vibrations.
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